Ejercicios para clase. Tema 8: Geometría en el espacio.

- 1ª) Halla el ángulo que forman $r \equiv \begin{cases} x = 1 y \\ z = 1 + y \end{cases}$ $y \quad \pi \equiv x + y + z = 0$.
- 2ª) Halla el área del triángulo de vértices $\begin{cases} A = (1,1,1) \\ B = (0,3,5) \\ C = (4,0,2) \end{cases}$
- 3^a) Hallar la ecuación del plano que contiene al punto P = (2,1,2) y a la recta $r \equiv x 2 = \frac{y 3}{-1} = \frac{z 4}{-3}$.
- **4**a) Estudiar la posición relativa de las rectas $r = \begin{cases} x + y z = 0 \\ x + z = 1 \end{cases}$ y $s = \frac{x 4}{1} = \frac{y 2}{-2} = \frac{z + 3}{-1}$. Hallar la ecuación del plano que las contiene.
- 5^a) Hallar la ecuación de la recta que pasa por el punto P = (2,0,1) y corta perpendicularmente a la recta $r = \frac{x-2}{2} = \frac{y-1}{-1} = \frac{z}{2}$.
- 6^a) Hallar la ecuación del plano que contiene a la recta r = x 2 = y 3 = z y es paralelo a la recta $s = \frac{x 3}{2} = \frac{y 2}{1} = \frac{z 2}{4}$.
- 7^a) Determinar los puntos de corte del plano $\pi = 3x 2y + z = 6$ con los ejes de coordenadas y calcular el área del triángulo que dichos puntos definen.
- 8a) Halla la distancia entre las rectas: $r = \begin{cases} x 2y + 4z = 1 \\ x + y = 3 \end{cases}$ $s = \frac{x 2}{-4} = \frac{y + 1}{4} = \frac{z}{3}$.
- 9^a) Halla el simétrico del punto P = (1,2,1) respecto del plano $\pi \equiv x + y + z = -3$.
- 10^a) Halla el simétrico de P = (-2,1,5) respecto de r = $x-2 = \frac{y+3}{-2} = \frac{z-1}{1}$.
- 11a) Dado el punto P = (-1,2,1), busca un punto Q del plano $\pi = -3x + y + z = -5$ de forma que el vector \overrightarrow{PQ} sea perpendicular al plano π .
- 12a) Calcula el punto de la recta $s = \begin{cases} x y 5 = 0 \\ x 3y z 7 = 0 \end{cases}$ que equidista de los puntos P = (1,0,-1) y Q = (2,1,1).
- 13a) Comprobar que la recta $r \equiv x 3 = y 2 = \frac{z 7}{-1}$ es paralela al plano $\pi \equiv x + 2y + 3z = 0$. Calcular la distancia entre ambos.
- 14^a) Hallar la distancia entre las rectas $r \equiv \begin{cases} y = 0 \\ x + z = 0 \end{cases}$ y $s \equiv \begin{cases} x = 0 \\ y = 4 \end{cases}$.
- 15^a) Hallar el plano que contiene a la recta $r = \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z+1}{2}$ y es perpendicular al plano $\pi = 2x 3y + z = 0$.

Ejercicios para examen. Tema 8: Geometría en el espacio.

- 1a) Hallar el plano que contiene al punto A = (0,1,1) y a la recta $r = \begin{cases} x = 1 k \\ y = 2 + k \\ z = 2 k \end{cases}$
- **2**a) Dadas las rectas: $r = \frac{x-1}{-1} = \frac{y-2}{-1} = z-3$ $y = s = \frac{2x-y-z=-3}{x-2y+z=0}$
 - a) Estudiar de su posición relativa.
 - b) Obtener si es posible el plano que las contiene.
- 3a) Dadas las rectas $r = \frac{x-3}{2} = \frac{y+5}{-2} = \frac{z-1}{-1}$ y $s = \begin{cases} 3x + 2y + 2z = 0 \\ x + 2y 2z = 0 \end{cases}$
 - a) Estudiar su posición relativa.
 - b) Calcular su distancia.
 - c) Obtener, si es posible, el plano que las contiene.
- 4a) Obtener el valor de K para que los puntos $\begin{cases} A = (1,2,3) \\ B = (0,1,1) \\ C = (-1,2,0) \end{cases}$ estén en un mismo D = (0,K,0)

plano π . Hallar el punto simétrico de P=(1,3,5) respecto de π . Calcular la distancia de P a π .

 5^{a}) Hallar la ecuación de la recta que pasa por el punto A = (1,1,-2) y se apoya en

las rectas
$$r =$$

$$\begin{cases}
 x = \lambda \\
 y = 0 \\
 z = -1 - 3\lambda
\end{cases} y s = \begin{cases}
 x + y - z = 3 \\
 x - y + z = -1
\end{cases}$$

- **6**^a) Dado el punto P = (1,3,4) y el plano $\alpha = 2x y 2z = 0$.
 - a) Obtener la ecuación de alguna recta r que pase por P y sea paralela a α .
 - b) Hallar la ecuación de la recta perpendicular a r por P y paralela a α.
 - c) Cual es el punto del plano más próximo al punto ${\bf P}$.
- 7ª) Comprueba que los puntos $\begin{cases} A = (2,1,3) \\ B = (1,1,2) \end{cases}$ determinan un triángulo equilátero. C = (2,2,2)

Obtener la altura trazada desde A, y calcular el área del triángulo.

8^a) Estudiar la posición relativa entre la recta $r = \begin{cases} x + y - z = 2 \\ 2x - y + 2z = 1 \end{cases}$ y el plano

 $\pi \equiv 2x - y + mz = 1$. Hallar la distancia entre ambos en cada caso.

9^a) Estudiar la posición relativa de las rectas:

$$r \equiv \frac{x-1}{-1} = \frac{y}{2} = z+2$$
 y $s \equiv \begin{cases} x+z=0 \\ 3x-y=0 \end{cases}$. Calcular la distancia entre ellas.

- 10^a) Dadas las rectas $r = \frac{x-1}{-1} = \frac{y}{-2} = z+2$ y $s = \begin{cases} x+z+1=0\\ 2x-y=0 \end{cases}$. Hallar, si es posible, el plano que las contiene y la distancia entre ellas.
- 11^a) Hallar la ecuación del plano que pasa por el punto P = (1,-1,2), es perpendicular al plano $\pi \equiv x y + z = 0$ y además, es paralelo a la recta (x = 1 + 2k)

$$r \equiv \begin{cases} x = 1 + 2k \\ y = k \text{ . Razona la respuesta.} \\ z = -1 - k \end{cases}$$

12^a) Hallar la recta perpendicular a $r = \frac{x}{2} = \frac{y+3}{3} = z$ y paralela al

plano
$$\pi \equiv \begin{cases} x = 2 + \lambda \\ y = \mu \\ z = 1 + 2\lambda - 2\mu \end{cases}$$
 que pasa por el punto $P = (-1,0,2)$.

- 14^a) Hallar el plano que contiene a la recta $r = \begin{cases} 2x y z = 0 \\ x + y 2z = 3 \end{cases}$ y es perpendicular al plano $\alpha = 2x y + 2z = 0$.
- 15^a) Un triángulo rectángulo tiene su vértice A en la recta $r = \begin{cases} x = 3 \\ y + z + 1 = 0 \end{cases}$ y la hipotenusa une los vértices B = (2,1,-1)y C = (0,-1,3). Obtener el área.
- hipotenusa une los vértices B = (2,1,-1)y C = (0,-1,3). Obtener el área. 16^a) Dada la recta $r = \begin{cases} x - 2y = 0 \\ x + 2y - z = 0 \end{cases}$
 - a) Obtener el punto P de la recta r que equidista de los puntos A = (-1,0,3) y B = (1,2,1).
 - b) Hallar la distancia del punto P a la recta r_{AB}.
- 17^a) Hallar la ecuación de la recta que pasa por el punto P = (1,3,4) y es paralela a los planos $\alpha = 2x y 2z = 0$ y $\pi = -x + y 2z = 1$.
- **18**^a) Dados los puntos: O = (0,0,0), A = (1,1,1), B = (1,1,k) y C = (k,-1,1)
 - a) Hallar k para que estén en el mismo plano.
 - b) Obtener el área del triángulo que determinan para k=1.

19^a) Dados
$$\pi \equiv x - y + 2z - 1 = 0$$
 y $r \equiv \begin{cases} x - y = 0 \\ x + z = 0 \end{cases}$

- a) Hallar la recta s que pasa por A = (1,1,1), es perpendicular a la recta r y paralela al plano π .
- b) Obtener la distancia de s a π .